当前位置:首页 > 数学符号

数学集合符号使用方法

2019-09-15 19:25:44   分类:数学符号

(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N

(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)

(3)全体整数的集合通常称作整数集,记作Z

(4)全体有理数的集合通常简称有理数集,记作Q

(5)全体实数的集合通常简称实数集,记作R

(6)复数集合计作C

集合的运算:

集合交换律

A∩B=B∩A

A∪B=B∪A

集合结合律

(A∩B)∩C=A∩(B∩C)

(A∪B)∪C=A∪(B∪C)

集合分配律

A∩(B∪C)=(A∩B)∪(A∩C)

A∪(B∩C)=(A∪B)∩(A∪C)

集合德.摩根律

Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

集合“容斥原理”

在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3

card(A∪B)=card(A)+card(B)-card(A∩B)

card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)

1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。

集合吸收律

A∪(A∩B)=A

A∩(A∪B)=A

集合求补律

A∪CuA=S

A∩CuA=Φ

设A为集合,把A的全部子集构成的集合叫做A的幂集

德摩根律:A-(BUC)=(A-B)∩(A-C)

A-(B∩C)=(A-B)U(A-C)

~(BUC)=~BU~C

~(B∩C)=~B∩~C

~Φ=E ~E=Φ

总结:   数学集合符号真的很复杂,小编看看都觉得有些头大.除了看懂一些符号外,其它都不太懂哦,下面是一个在线的数学符号小工具,如果您有一些符号觉得输入比较麻烦,也可以直接在线查找到,希望能帮到有需求的同学吧

在线小工具